345

CRISPR/Cas and Its Potentiality as an Effective Tool

Pessina, S., Lenzi, L., Perazzolli, M., Campa, M., Dalla, C. L., Urso, S., Valè, G., et al.,

(2016). Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine.

Hortic. Res., 3, 16016.

Prado, J. R., Segers, G., Voelker, T., Carson, D., Dobert, R., Phillips, J., Cook, K., et al.,

(2014). Genetically engineered crops: From idea to product. Annu. Rev. Plant Biol., 65,

769, 790. https://doi.org/10.1146/annur ev-arpla nt-05021 3-04003 9.

Pyott, D. E., Sheehan, E., & Molnar, A., (2016). Engineering of CRISPR/Cas9-mediated

potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol., 17,

1276–1288.

Raman, R., (2017). The impact of genetically modified (GM) crops in modern agriculture: A

review. GM Crops & Food, 8, 195‒208.

Rao, G. J. N., Reddy, J. N., Variar, M., & Mahender, A., (2016). Molecular breeding to

improve plant resistance to abiotic stresses. In: Al-Khayri, J., Jain, S., & Johnson, D.,

(eds.), Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits.

Springer, Cham. https: //doi.org/10.1007/978-3-319-22518 -0_8.

Rong, Y. S., & Golic, K. G., (2000). Gene targeting by homologous recombination in

Drosophila. Science, 288, 2013–2018.

Samai, P., Pyenson, N., Jiang, W., Goldberg, G. W., Hatoum-Aslan, A., & Marraffini, L. A.,

(2015). Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity.

Cell, 161, 1164–1174.

Sedeek, K. E. M., Mahas, A., & Mahfouz, M., (2019). Plant genome engineering for

targeted improvement of crop traits. Front Plant Sci., 10, 114. https://doi.org/10.3389/

fpls.2019.00114.

Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., et al., (2013). Targeted

genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol., 31, 686.

Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., et al.,

(2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under

field drought stress conditions. Plant Biotechnology Journal, 15, 207–216.

Stella, S., Alcón, P., & Montoya, G. J. N., (2017). Structure of the Cpf1 endonuclease R-loop

complex after target DNA cleavage. Nature, 546, 559.

Stockinger, E. J., Skinner, J. S., Gardner, K. G., Francia, E., & Pecchioni, N., (2007). Expression

levels of barley Cbf genes at the frost resistance-H2 locus are dependent upon alleles at Fr-H1

and Fr-H2. The Plant Journal, 51(2), 308–321. doi: 10.1111/j.1365-313X.2007.0141.x.

Sun, K., Wolters, A. M., Vossen, J. H., Rouwet, M. E., Loonen, A. E., Jacobsen, E., Visser,

R. G., & Bai, Y., (2016). Silencing of six susceptibility genes results in potato late blight

resistance. Transgenic Res., 25(5), 731–742. doi: 10.1007/s11248-016-9964-2.

Sun, Q., Lin, L., Liu, D., Wu, D., Fang, Y., Wu, J., & Wang, Y., (2018). CRISPR/Cas9­

mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica

napus L. Int. J. Mol. Sci., 19, 2716.

Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., et al., (2016). Engineering herbicide

resistant rice plants through CRISPR/Cas9-mediated homologous recombination of

acetolactate synthase. Mol. Plant., 9, 628–631.

Tang, L., Mao, B., Li, Y., Lv, Q., Zhang, L., Chen, C., He, H., Wang, W., Zeng, X., Shao,

Y., et al., (2017). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low

Cd-accumulating indica rice without compromising yield. Scientific Reports, 7, 14438. doi:

10.1038/ s41598-017-14832-9.