345
CRISPR/Cas and Its Potentiality as an Effective Tool
Pessina, S., Lenzi, L., Perazzolli, M., Campa, M., Dalla, C. L., Urso, S., Valè, G., et al.,
(2016). Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine.
Hortic. Res., 3, 16016.
Prado, J. R., Segers, G., Voelker, T., Carson, D., Dobert, R., Phillips, J., Cook, K., et al.,
(2014). Genetically engineered crops: From idea to product. Annu. Rev. Plant Biol., 65,
769, 790. https://doi.org/10.1146/annur ev-arpla nt-05021 3-04003 9.
Pyott, D. E., Sheehan, E., & Molnar, A., (2016). Engineering of CRISPR/Cas9-mediated
potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol., 17,
1276–1288.
Raman, R., (2017). The impact of genetically modified (GM) crops in modern agriculture: A
review. GM Crops & Food, 8, 195‒208.
Rao, G. J. N., Reddy, J. N., Variar, M., & Mahender, A., (2016). Molecular breeding to
improve plant resistance to abiotic stresses. In: Al-Khayri, J., Jain, S., & Johnson, D.,
(eds.), Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits.
Springer, Cham. https: //doi.org/10.1007/978-3-319-22518 -0_8.
Rong, Y. S., & Golic, K. G., (2000). Gene targeting by homologous recombination in
Drosophila. Science, 288, 2013–2018.
Samai, P., Pyenson, N., Jiang, W., Goldberg, G. W., Hatoum-Aslan, A., & Marraffini, L. A.,
(2015). Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity.
Cell, 161, 1164–1174.
Sedeek, K. E. M., Mahas, A., & Mahfouz, M., (2019). Plant genome engineering for
targeted improvement of crop traits. Front Plant Sci., 10, 114. https://doi.org/10.3389/
fpls.2019.00114.
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., et al., (2013). Targeted
genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol., 31, 686.
Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., et al.,
(2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under
field drought stress conditions. Plant Biotechnology Journal, 15, 207–216.
Stella, S., Alcón, P., & Montoya, G. J. N., (2017). Structure of the Cpf1 endonuclease R-loop
complex after target DNA cleavage. Nature, 546, 559.
Stockinger, E. J., Skinner, J. S., Gardner, K. G., Francia, E., & Pecchioni, N., (2007). Expression
levels of barley Cbf genes at the frost resistance-H2 locus are dependent upon alleles at Fr-H1
and Fr-H2. The Plant Journal, 51(2), 308–321. doi: 10.1111/j.1365-313X.2007.0141.x.
Sun, K., Wolters, A. M., Vossen, J. H., Rouwet, M. E., Loonen, A. E., Jacobsen, E., Visser,
R. G., & Bai, Y., (2016). Silencing of six susceptibility genes results in potato late blight
resistance. Transgenic Res., 25(5), 731–742. doi: 10.1007/s11248-016-9964-2.
Sun, Q., Lin, L., Liu, D., Wu, D., Fang, Y., Wu, J., & Wang, Y., (2018). CRISPR/Cas9
mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica
napus L. Int. J. Mol. Sci., 19, 2716.
Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., et al., (2016). Engineering herbicide
resistant rice plants through CRISPR/Cas9-mediated homologous recombination of
acetolactate synthase. Mol. Plant., 9, 628–631.
Tang, L., Mao, B., Li, Y., Lv, Q., Zhang, L., Chen, C., He, H., Wang, W., Zeng, X., Shao,
Y., et al., (2017). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low
Cd-accumulating indica rice without compromising yield. Scientific Reports, 7, 14438. doi:
10.1038/ s41598-017-14832-9.